Growth-Optimal Portfolio Selection under CVaR Constraints
نویسندگان
چکیده
Online portfolio selection research has so far focused mainly on minimizing regret defined in terms of wealth growth. Practical financial decision making, however, is deeply concerned with both wealth and risk. We consider online learning of portfolios of stocks whose prices are governed by arbitrary (unknown) stationary and ergodic processes, where the goal is to maximize wealth while keeping the conditional value at risk (CVaR) below a desired threshold. We characterize the asymptomatically optimal risk-adjusted performance and present an investment strategy whose portfolios are guaranteed to achieve the asymptotic optimal solution while fulfilling the desired risk constraint. We also numerically demonstrate and validate the viability of our method on standard datasets.
منابع مشابه
Time Consistent Recursive Risk Measures Under Regime Switching and Factor Models and Their Application in Dynamic Portfolio Selection∗
The proper description of dynamic information correlation among individual stages is very important for the construction of multi-period risk measure and the selection of optimal investment strategy. To overcome the limitations of existing random frameworks, we initially introduce a ”two-level” structure to describe the dynamic information evolution: the outer-level describes endogenous marcoma...
متن کاملInverse portfolio problem with mean-deviation model
A Markowitz-type portfolio selection problem is to minimize a deviation measure of portfolio rate of return subject to constraints on portfolio budget and on desired expected return. In this context, the inverse portfolio problem is finding a deviation measure by observing the optimal mean-deviation portfolio that an investor holds. Necessary and sufficient conditions for the existence of such ...
متن کاملOptimal Dynamic Portfolio with Mean-CVaR Criterion
Value-at-risk (VaR) and conditional value-at-risk (CVaR) are popular risk measures from academic, industrial and regulatory perspectives. The problem of minimizing CVaR is theoretically known to be of a Neyman–Pearson type binary solution. We add a constraint on expected return to investigate the mean-CVaR portfolio selection problem in a dynamic setting: the investor is faced with a Markowitz ...
متن کاملMinimizing CVaR and VaR for a Portfolio of Derivatives∗
Value at risk (VaR) and conditional value at risk (CVaR) are the most frequently used risk measures in current risk management practice. As an alternative to VaR, CVaR is attractive since it is a coherent risk measure. We analyze the problem of computing the optimal VaR and CVaR portfolios. In particular, we illustrate that VaR and CVaR minimization problems for derivatives portfolios are typic...
متن کاملMean – variance portfolio selection with ‘ at - risk ’ constraints and discrete distributions q
We examine the impact of adding either a VaR or a CVaR constraint to the mean–variance model when security returns are assumed to have a discrete distribution with finitely many jump points. Three main results are obtained. First, portfolios on the VaR-constrained boundary exhibit (K + 2)-fund separation, where K is the number of states for which the portfolios suffer losses equal to the VaR bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.09800 شماره
صفحات -
تاریخ انتشار 2017